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The motion of a snake is considered using as a model an elastic rod in which the shape of the neutral axis is controllable. The 
optimal control of this shape, guaranteeing the minimum internal effort for a given value of the average tractive force, is found. 
0 2002 Elsevier Science Ltd. All rights reserved. 

There are different ideas of the mechanism that enables snakes to move. One of these is the so-called 
“wave-like mass transfer” [l], when the snake shifts different parts of its body in the manner of a “relay 
race”, and the friction forces at the instantaneous points of support are such as to guarantee that there 
is no local slipping. A recent paper [2] has assigned dry friction a more significant role: phases of rest 
alternate with phases of sliding, yielding an intermittent motion in which inertial effects play an important 
role. 

The principle that the tractive force in the motion of a snake is created entirely by internal forces, 
without the participation of friction, was first formulated by M. A. Lavrent’yev (see, e.g. [3]). 

In the model proposed below, dry friction also plays a passive role: it exists, if at all, only as resistance 
to the motion, which must be overcome. The tractive force is produced by the snake by adjusting the 
shape of its body as the latter interacts with the surrounding obstacles. This model resembles those of 
[3-6], in which the snake is regarded as an absolutely flexible inextensible thread with a control torque 
distributed over its length, the snake being treated either from the start as a continuous medium [3-51, 
or first as a multilink structure, from which a continuous-medium model is then obtained by taking the 
limit [6]. 

Observations of nature indicate that snakes move in such a way that each point of the axial line of 
the snake’s body describes the same trajectory as all other such points. In other words, the velocity vector 
of the snake at any point is directed along the tangent to the trajectory or to the curved line of the 
body. Such motion of a flexible thread is known as apparent rest. 

This means that the trajectory of a snake, the axial line of whose body is at each instant of time a 
whole piece of the trajectory, may be considered as a geometrical constraint. Moving according to the 
constraint, the snake is arranged by internal forces so that the reaction of the constraint has the required 
direction. 

A simple example will explain this idea (Fig. 1). Suppose three point masses A, B and C are situated 
all the time on a fixed parabola (the constraint). They are linked together by rigid weightless rods with 
an elastic element (hinge) at the points of articulation. The points may move without friction along the 
parabola. There are no other forces. 

If the rods are of the same length, there is an obvious equilibrium position in which the point B lies 
at the origin. If the hinges of the rods in the stress-free state are collinear, the potential energy of the 
deformed state is a maximum in the equilibrium position just described and the equilibrium is unstable. 
The system, if disturbed, will go off to infinity. If the hinge is stress-free at this very equilibrium position, 
the latter will obviously be stable. The hinge may be stress-free at any position of the point B on the 
parabola. Then the system will have two stable equilibrium positions, symmetric to one another relative 
to they axis, and one unstable equilibrium position at the origin. 

Suppose p is the angle between the rods, as shown in Fig. 1, p. is the value of p at which the hinge 
is stress-free, and p* is the angle between the rods when the point B is the origin. The curves in Fig. 2 
represent the behaviour of the potential energy as a function of the coordinate of the point B on the 
x axis, for different values of po. 

Thus, by varying the point at which the hinge on one of the links is attached, one can control both 
the equilibrium position and the motion of the system. 

tPrik1. Mat. Mekh. Vol. 66, No. 4, pp. 534-538,2002. 
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Fig. 3 

The example may be complicated slightly by placing several articulated rods on the parabola with 
elastic elements between them. In such a system there will be several control parameters: the control 
may be applied to the stress-free relative position of each pair of rods. The number of control parameters 
may be diminished -in particular, reduced to one -by coupling together controls of different parameters. 

The system under consideration is the simplest example of an elastic system in which, by internally 
regulating the parameters of an elastic element, one can control the motion of the system subject to 
an elastic constraint. 

This is the basic idea of our model for the dynamic behaviour of a snake, which differs from the simple 
example just considered only in that it is a distributed elastic system. If the aim of the motion is to move 
from an initial point on a horizontal plane to a final point, the mechanism in question cannot perform 
the motion when the geometric constraint is chosen to be a straight line connecting those two points. 
Besides, on the basis of observations of nature, we shall assume from the start that the geometric 
constraint formed to achieve the aforementioned aim is a periodic curve, which may be considered, in 
the simplest case, as a sine curve (Fig. 3). The period and amplitude of the sine curve remain to be 
determined. 

We may assumed without loss of generality that the length of the snake is x. The snake is a system 
with one degree of freedom, assumed moreover to be inextensible; a single generalized coordinate q, 
defines the position of the centre of the snake’s body on the x axis. Its transversal measurements will 
be ignored. 

We can simplify the analysis still further by assuming that the curvature of the trajectory is not large, 
so that it may be approximated by the second derivative: y” = d2y/dx2. Then the potential energy of the 
deformed state of the snake may be computed as 

n=+ q,+r12 j !g,2(x,x*,q2)dx, ~(x,x*,q*)=y”(x)-u”(x*,q2) 
q, -n/2 
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where E is the modulus of elasticity, J is the moment of inertia of the cross-section, and u(x*, q2) is a 
function defining the shape of the snake’s body in the stress-free state. The variable x* = x - q1 is the 
relative coordinate of a point on the body, and q2 is a control parameter. The role of the control function 
in the distributed system, u(x*, q2), is equivalent to that of the parameter ~0 in the simple example 
considered previously. 

The derivative of the force function U(q,, q2) = -n(q,, q2) with respect to the parameter ql, which 
defines the position of the centre of the snake’s body along the x axis, with the control function u(x*, 
q2) frozen, is equal to the force exerted on the snake by the constraint 

Q, =$f=+EJ )I - 

9, +n/2 

-EJ J 5(x,x-q,.42)1(“‘(X-q,,q2)dX 
9,-n/2 

The derivative of the force function with respect to the parameter q2 with q1 fixed is a measure of 
the force exerted by the snake in implementing the control function. It is assumed that the electrical 
signals directed toward the snake’s muscles are interconnected in such a way that the control of the 
neutral axis is achieved by regulation of a single scalar parameter (the snake does not control each muscle 
separately). Then a measure of the internal forces developed by the snake during the motion will be 
the increase in the energy of its deformed state when the control parameter is varied. 

Before computing this force, it is convenient to write the integrand in the expression for the force 
function in terms of the relative coordinate; after that we find that 

Q2 =g= EJ ‘i2&x* +q,,x*.q2)zcix* 
-x12 

We formulate the following problem. It is required to find a control u(x*, q2) of the neutral axis of 
the snake, moving along a sine curve, which, for a given average tractive force (Q,), minimizes the control 
forces exerted, in the sense that (Q;) + min (angular brackets denote the average with respect to ql). 

As already remarked, the snake is moving along a sine curvey = asinbx whose amplitude a and spatial 
frequency b are not known in advance. 

We shall also seek the control function as a sine curve, characterizing the propagation of the elastic 
wave along the snake’s body: 

This function defines the propagation of an elastic wave tracing the motion of the snake’s body along 
the constraint, if the control parameter q2 follows the parameter of the motion q1 : q2 = q1 = q, 

Thus, we are looking for six parameters: a, b, c, d, e andf. We may assume without loss of generality 
that a > 0, b > 0, c > 0. 

Let us evaluate the tractive force: 

q+n12 

-EJ I 5(x.x - q, q)cd’ cos lJ(x - q,q)& 
9-1~12 

{(X,X - 4,q) = ab2 sin bx - cd2 sin q(x _ q, q) 

If there is no control (c = 0, the shape of the snake in the undeformed state is a straight line), the 
force acting on the snake has the form 

1 24 Q, =-?a b EJsin2bqsinbrc 
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For example, if the length of the snake is a quarter of a period of the trajectory, that is, b = I/Z, then 
Qi = -(a2EJi32)sinq. This means that in the case of a sinusoidal constraint with no control, the snake 
is a mathematical pendulum, in which the role of the angular variable is played by the coordinate q, 
with alternating stable and unstable equilibrium positions. The same is true when the snake’s length 
exceeds a quarter of a period by a multiple of a half-period. But if the snake’s length is a multiple of 
the half-period of the trajectory, the force Q, will vanish identically as a function of q. In that case the 
snake will experience no forces due to the constraint, and any position on the constraint will be a neutral 
equilibrium position. 

This last condition must be satisfied by the snake’s length (or, equivalently, if the length is given, it 
must be satisfied by the trajectory chosen) so that the forces developed when a control is applied will 
not be consumed in overcoming a conservative force. 

We have thus established that from now on, that is, when c f 0, the only meaningful case to be 
considered is when b E N (b = 1,2, . .). 

Computation of the average value of Q, leads in the general case to the expression 

(Q, >* = EJab3cd2~, sin f 

I 

ok b&d 
= -sin(bfd)f 

Comparing the displacement wave y = &r&(x* + q) with the deformation wave of the neutral axis 
u = bsinr@*, q), we note that these waves move in opposite directions if sgn(ed) < 0 and in the same 
direction if sgn(ed) > 0. Therefore, if we consider d > 0 (this will not affect the generality of the 
argument), the expression obtained for (QJ may be expressed in the equivalent form 

<Q >= (QI)+~ e<O 
1 

CQ,)_v e>O 

It is obvious that, other conditions being equal, the tractive force is larger if both waves propagate 
in the same direction (e > 0). This will be the case considered below. 

We now calculate (Qi) 

(Q~)=~(EJob3cd2)2(~~+2w~sin2f)+~(EJbcd3)2sin2dn- 

-i E2J2ab4c3d20+ sindncos f 

In what follows, to avoid cumbersome derivations, we will adopt a certain obvious assumption without 
formal justification. We shall assume that d is an integer. Then the expression for (Q;) can be simplified; 
taking the expression for (Q,) into account, we obtain 

Here it is already easy to see that, for a given average tractive force (Q,), the forces exerted (Qf) will 
be minimal at b = d, when (Q:) = (QJ2. The expression for the average force under those conditions 
will be (QJ = (n/2)EJab3 c sin f Obviously, it is advantageous to take the phase displacement f to bc 
equal to z/2. 

We have thus established that, in motion along the constraint y = asinbx, the optimal control of the 
neutral line in the snake’s body has the form u = ccosb(x* + q). 

In conclusion, we will present the expression obtained for the treative force in dimensional variables, 
assuming that the dimensionless coordinate x is related to the corresponding dimensional coordinate 
2 by the formulax = ML, where L is the length of the snake. We have (Q,) = rcSEJacbSl(2L4). 

Example. Suppose the length of the snake is L = 100 cm. The average radius of the cross-section is R = 2 cm. 
The amplitude of the trajectory is a = 5 cm. The amplitude of the controlled neutral axis is c = 1 cm. Set 



A model of the mechanism of motion of a snake 527 

b = 5 (2.5 waves along the length of the body). The modulus of elasticity E = 2 kg/cm2. For these data, the 
weight of the snake is 1.5 kg, and J = 64/3 cm4. Substituting these figures into the last formula, we obtain 

((21) = 1 kg. 
The variation of the coordinate q with time depends on the formulation of the dynamical problem. In particular, 

if the tractive force cancels out the friction force, the coordinate is a linear function of time: q = vt. The change 
in the shape of the snake in dimensional variables and in an attached system of coordinates, will then be described 
by the formulay = asin[r&(x* + vt)/L]. The frequency of the oscillations of the body is &v/L. For the data of the 
example, taking the oscillation frequency to be equal to 2.5 Hz, we find the snake’s speed to be 1 m/set. 
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